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Abstract

Bergum explicitly determined three representations for a complete residue system in
the quadratic field Q(\/jg) extending two earlier results in Q(J——l) and@(\/z). Among

these three representations, the first is simplest to derive, while the third is minimal in the
sense that the sum of their absolute values is minimal. Here, we extend these results by
deriving explicit representations for a complete residue system in any general quadratic
field. The first representation uses lattice points in a rectangle in the first quadrant of an
appropriate plane, while the second representation uses lattice points in a parallelogram,
and the third representation uses lattice points in a hexagon and possesses a minimality
property for imaginary quadratic fields.

Key words and phrase: quadratic field, complete residue system, lattice point
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Abstract

Bergum explicitly determined three representations for a complete residue system in
the quadratic field Q (\/:3_) extending two earlier results in Q (\/——1) and Q (\/:—5)
Among these three representations, the first is simplest to derive, while the third is
minimal in the sense that the sum of their absolute values is minimal. Here, we extend
these results by deriving explicit representations for a complete residue system in any
general quadratic field. The first representation uses lattice points in a rectangle in the
first quadrant of an appropriate plane, while the second representation uses lattice points
in a parallelogram, and the third representation uses lattice points in a hexagon and
possesses a minimality property for imaginary quadratic fields.

2010 Mathematics Subject Classification: 11A07, 11R04
Key words and phrases: quadratic field, complete residue system, lattice point

1 Introduction

The problem of explicitly determining complete residue systems in a general number field is
non-trivial, useful and interesting. Apart from the simplest case of the rational number field
[6, p. 57], not much is known for other algebraic number fields. Regarding the quadratic field,
Jordan and Potratz [4] treated those in the Gaussian field Q(v/~1), Potratz [5] considered
those in Q(v/—2), and Bergum [1] worked out those in Q(+/—3). The objective of this work
is to extend these results by determining three representations of a complete residue system
in any general quadratic field Q(y/m).

Throughout the entire paper, the following notation and terminology will be kept fixed.

1) m is a squarefree integer, m ¢ {0, 1};
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tSupported by the Center for Advanced Studies in Industrial Technology and the Faculty of Science,
Kasetsart University.



L4 B ifm=1 (mod 4)
2) Oy =

vm  ifm#1 (mod 4);
3) Zlowm] = {a +bom : a,b € Z} is the ring of integers of Q(y/m);
4) v =a+boy € Zlow] \ {0} is a fixed element with () being its principal ideal;
a?—ab+b*(1-m)/4 ifm=1 (mod4)
B) M) =47 =
a? — mb? if m# 1 (mod 4)
denotes the norm of +;

6) by lattice points, we refer to the elements of Z[oy];

7) by a complete residue system modulo () (or modulo ), [3, Chapter IX], abbreviated
by CRS(v), we mean a set of |N(y)| elements {£1,&o, ... ,§|N(,y)|} such that
i) & # & (mod ) for all 4,5 € {1,2,...,|N(v)|} with ¢ # j, and
i) for each a € Z[o.), there is a unique & € CRS(y) such that a = & (mod 7).

Note that, in case m = 1 (mod 4), we have

m—1
afn = —0om + -3 (1.1)

Our starting point is the following lemma which gives the least natural number divisible by
«v; here and throughout divisibility refers to that in the ring Z{oy,].

Lemma 1.1. Let v = a + boy, € Z[ow] \ {0}. If d = ged(a,b) € N so that
v =du, where p:=aj+ biom € Zlon), ged(ar,b1) =1,
then d|N(u)| is the least natural number divisible by .
Proof. Let ¢ € N be divisible by 7. Then there exists o = p + gom € Z[om] such that
c=va=d(a +biom) (D + qom). (1.2)
Consider four possible cases depending on b; and gq.

1. If b = 0 and q = 0, since ged(a1, b;) = 1, we have a1 = £1, and (1.2) gives ¢ = %dp,
yielding |c| = d|p| = d|N(u)].

2. If by = 0 and q # 0, since gcd(a,b1) = 1, we have a; = =*1, and (1.2) gives ¢ =
+(dp + dqow,), which is impossible because g # 0.

3. If by # 0 and ¢ = 0, from (1.2), we have ¢ = dpa; + dpbiom, which implies that p = 0,
yielding ¢ = 0, a contradiction.



4. If by # 0 and ¢ # 0, there are two possible subcases depending on the value of m
mod 4. If m = 1 (mod 4), using (1.1) and (1.2), we have

1—-m

c=d {aw - (—4~> le} + d(a1g + bip — b1@)om (1.3)

implying that
a1g+bip—big=0, ie, aig=bi(g—p). (1.4)

Thus, bilq, say, ¢ = bil, for some | € Z. Substituting into (1.4), we get p = I(by —
a1). Putting back into (1.3), we have ¢ = —ld (a? — aby + (1 — m)b}/4), and so ¢ =
|=l|d|N ()| = dIN(u)l.

If m # 1 (mod 4), using (1.2), we have

c = d(a1p + bigm) + d(a1q + blp)\/ﬁ. (1.5)
implying that
a1g+bip=0, ie, aig="bi(-p). (1.6)
Thus, bi|g, say, ¢ = bil, for some | € Z. Substituting into (1.6), we get p = —a1l.
Putting back into (1.5), we have ¢ = —dl (a? — mb}), and so ¢ = |-I|d|N(n)| >
d|N(p)]-
O

2 Representation I

Our first representation consists of lattice points in a rectangle in the first quadrant of the
plane R x Ry/m = {z + yy/m : z,y € R}.

Theorem 2.1. I. Keeping the notation of Lemma 1.1, consider the case m =1 (mod 4).
A) If d is even, let

-2
lez{m-i-y\/ﬁ:m,yeZ,O§x§d|N(u)|——1,0§y§d—2——}

1 1 —
Tzzz{(a:+§>+(y+§>\/n_1:x,yeZ,Ongle(u)I—l,Ogygd—Qz},

then T =Ty U Ty is a CRS(%).
B) If d is odd, let

d—1
T1;={:c+y\/r—n: z,y€Z, 0<z<d|N(p)|-1, OSyST}

1 1 d-
T21:{<m+§>+<y+§>\ﬁﬁi r,yeZ,OSdelN(u)l—l,0§y§~—23},



then T =Ty UTy is a CRS(7).
II. For the case m # 1 (mod 4), the set

T:={z+y/m:z,y€Z 0<z<d|N(p)|-1,0<y<d-1},
is a CRS(7).

Proof. 1. Let m =1 (mod 4).
A) When d is even, we first show that the elements in T are distinct modulo v. Let aj, a9 €T
be such that a1 = as (mod ). Then there exists § = az + baom € Z[om] such that

a; — ag = v6 = d(a1 + bion)(ag + baom). (2.1)
From (1.1) and (2.1), we have

d 1+
m -y =g {(2{11(12 — a1by —agbr + <—2m~> b1b2> + (a1ba + aghy — b1ba) ﬁ} . 29)

There are three possibilities.
Possibility 1: Both a1 and ag are elements of T1. Then they must be of the form

Q; = Tj + yl\/a (Z = 112)’ (23>

where z;,y; € Z,0 < z; < d|N(p)|—1and 0 < y; < 452, Substituting into (2.2) and equating
the irrational parts, we get y1 — ¥2 = %(albz + agby — b1by), showing that % | (y1 — y2). Since
0 <y < d—f-, we have 0 < |y; —y2| < d—gQ < %, which together with the last divisibility
imply that y1 = y. Thus, (2.1)-(2.3) yield v|(z1 — z2). Since 0 < z; < d|N(p)| — 1, we have
0 < |z1 — x2| < d|N(u)| — 1 < d|N(p)|. Invoking upon Lemma 1.1, we deduce that z; = z9,
and so a; = Q9.

Possibility 2: Both a1 and ag are elements of Tp. Then
1 1 )
oy = (wi =+ 5) -+ (yz =+ 5) vm (i=1,2), (2.4)

where z;,9; € Z, 0 < x; < d|N(u)|—1land 0 < y; < %. Proceeding exactly as in Possibility
1, we deduce that a1 = ag.

Possibility 8: One of the «, say, on € T1, while ag € Tp. Then

o =1 +y1vm, ag= (1'24‘%) i <y2+%> vm,
where z;,9; € Z, 0 < z; < d|N(p)| -1, 0 <y < d—;—2 (i = 1,2). Substituting into (2.2)
and equating the irrational parts, we get y1 — y2 — 1/2 = d(a1be + ag2b1 — bibs) /2, which is
a contradiction because the right-hand side is an integer while the left-hand side is not.
There remains to show that each element @ = z + yom € Z[om] is congruent mod v to an
element of T} or Ty. By the Euclidean algorithm, there exist q1,71 € Z such that

y=dgq+711 (0§T‘1<d).



Since d = ged(a, b), there exist u,v € Z such that au + bv = dg;. These last two relations
give

y = au+ bv + r1. (2.5)

To finish the proof of this part, we treat two possible cases depending on the parity of r1.
Case 1: rq is even, say, 11 = 2n1 (n1 € Np). The next step involves a clever choosing of
elements. By the Euclidean algorithm, there exist go,n2 € Z such that

z—n1—av—au+ (1 —m)bu/d=d|N(u)|g +n2, 0<ng<d|N()l,

and so

z=d|N(uw| g +n2 +n +av+au— (1 —m)bu/4. (2.6)

Using (2.5)-(2.6), we have

=1+ yom = d|N(w)| g2 +na + n1 + av +au — (1 — m) bu/4 + (au + bv + r1)om
= d|N(p) g2 + (v + u(l + o))y + 12 + na1v/m.

Since d|N(u)] =0 (mod vy), we have

a=ng+nv/m (mod 7). (2.7)

Since 0 < ng < d|N(w)|, 0 < 1 = 2n;1 < d, and d is even, we have 0 < ny < d|N(u)|-1, 0 <
n1 < (d — 2)/2. Thus, modulo v, we have a = ng +ni/m € Ti.

Case 2: r1 is odd, say, 71 = 2n1 + 1 (n; € Ng). Proceeding in a manner similar to the
previous case, there exist g, ng € Z such that

r—nm—1l—av—au+(1-—m)bu/d=d|N(p)|g+n2 (0<na <d|N(p)).

Then

=7 +yom=d|N()|g+n2+n +1+av+au—(1—m)bu/d+ (au+bv+ri)om
= d|N(u)] g2+ @+ u(l +om))y+n2+1/2+ (1 +1/2) Vm
= (g +1/2) + (m +1/2) vVm  (mod 7).

Since 0 < ng < d|N(p)] and 0 < ny = u?:l & d_;g7 we see that « is congruent mod v to an
element in T5.

B) We proceed now to the case where d is odd. To show that the elements in T" are distinct
mod v, let a;, ap € T be such that a1 = ag (mod 7). Then there exists § = az+ba0m € Zlom)
such that

a1 —ag = v = d(ay + biom)(ag + baom). (2.8)

There are three possibilities.



Possibility 1: Both ay and ag are elements of T1. Then
; = T; + yivm (i=12),

where z;,v; € Z, 0 < z; < d|N(u)]—1and 0 < y; < d—g—l. Substituting into (2.8) and
multiplying by 2, we have

2((171 = 111'2) + 2(y1 = yg)\/ﬁ
m+1

=d <<2a1a2 + <—2——> biby — a1bs — b1a2> + (a1b2 + brag — blbz)\/ﬁ>

Equating the irrational part, we get 2(y1 — y2) = d(a1b2 + biag — b1b2), which shows that
d | 2(y1 — y2). Since 0 < y; < (d—1)/2 (i = 1,2), we deduce at once that y1 = y2, and
consequently, 1 = o (mod 7). Since 0 < z; < d|N(p)| — 1 (¢ = 1,2), Lemma 1.1 shows
immediately that 1 = x9, and so a; = as.

Possibility 2: Both oy and ag are elements in T5. Then

ai:<mi+%>+(w+%>\/7—ﬁ (i=12),

where z;,y; € 2,0 < x; < d|N(u)|—1and 0 <y <
1, we deduce that a; = ag.

Possibility 8: One of the «y, say, cq € T1, while ag € To. Then

< d%S. Proceeding exactly as in Possibility

1 1
oy = 1 +y1vm, a2=(952+§)+ <y2—l—§) vm,

where z;,y; € Z, 0 < z; < dIN(w)| -1 (i =1,2), 0 <y < 452 and 0 < yp < G2
Substituting into (2.8) and multiplying by 2, we have

(2£E1 — 2x9 — 1) + (2y1 — 2yy — 1)\/7%

1
=d { <2a1a2 +- m; biby — ai1by — b1a2> =t (a1b2 + brag — blbg) ﬁ} :

Equating the irrational part, we get d | (2y1 — 2y2 — 1). Since 0 < y; < (d — 1)/2 and
0 < yp < (d—3)/2, we deduce that 2y; = 2y + 1, which is a contradiction because the
left-hand side is even, while the right-hand side is odd.

There remains to show that each element o = = + yo, € Z[on] is congruent mod
to an element of T. By the Euclidean algorithm, there exist ¢i,71 € Z such that y =
dgi + 71, 0 <7 <d. Since d = ged(a,b), there exist u,v € Z such that au + bv = dq, and
so y = au + bv + r1. We treat three possible cases.

Case 1: 71 is even, say r1 = 2n; (ny € Ng). Then there exist g2, n2 € Z such that

z—mn1 —av—au+ (1 —m)bu/d=d|N(u) g +n2, 0<ng <d|N(u),



and so

a=x+Yom
j= 1
= d|N ()l g2 +n2 +m1+av+au - (~—4—m> bu + (au + bv + 1) <——2—+@>
=d|N()la2+ (v +u(l+om))y+ns +mvm

=ng+n1vm (mod 7).
Since 0 < ng < d|N(u)|, 0 < ny =r1/2 < (d—1)/2, we have ng + niy/m € Ty,
Case 2: 1 is odd, say, r1 = 2n1 + 1 (n; € Ng). Then there exist g2,n2 € Z such that
z—n1—1—av—au+ (1 —m)bu/d=d|N(u)| g +n2, 0<ny <d|N(u).
Then

a=x+Yom
1- -1
=d|N(u)|g +ne+n+1+av+au— (_4ﬁ> bu + (au + bv + 1) (—2— + _2m_>
=d|N()| g+ (4wl +om))y +n2+1/2+ (n1 + 1/2) Vm
= (ng +1/2)+ (n1 +1/2) v/m (mod 7).
Since 0 < ng < d|N(p)|, 0 < ny = (r1 —1)/2 < (d —3)/2 (because d is odd), we have
(ng+1/2) + (n1 +1/2)ym e Ts.

II. Let m # 1 (mod 4). To show that the elements in T' are distinct mod v, let
=z +yvymeT (i = 1,2}, (2.9)
where z;,vy; € Z, 0 < z; < d|N(p)| —1 and 0 < y; < d— 1, be such that oy = (mod 7).
Then there exists § = ag + boy/m € Z[/m] such that a; — ag = 4, and so
(z1 — z2) + (1 — y2)v/m = d (a1a2 + bibam) + d (a1bp + azby) Vm. (2.10)

Substituting into (2.10) and equating the irrational parts, we get y1 — y2 = d(a1bz + a2b1),
showing that d | (y1 — y2). Since 0 < y; < d—1, we have 0 < |y; — yo| <d—1 < d, which
together with the last divisibility imply that y1 = y2. Thus, (2.10) yields v|(z1 — z2). Since
0 < z; < d|N(p)| — 1, we have 0 < |z1 — z2| < d|N(u)| =1 < d|N(p)|. Invoking upon
Lemma 1.1, we deduce that z; = x2, and so a; = as.

Next, we show that each element a = z + y/m € Z[\/m] is congruent mod < to an
element of T. By the Euclidean algorithm, there exist q;1,71 € Z such that

y=dq1+’r1 (0§7‘1<d).

Since d = ged(a, b), there exist u,v € Z such that au + bv = dg. These last two relations
give

y=au+bv+r]. (2,11)



By the Euclidean algorithm, there exist g,r9 € Z such that

z—av—ubm=d|N(u)|g+rs, 0<ry<d|N(u),

and so

z=d|N(u)| g + re + av + ubm. (2.12)
Using (2.11)-(2.12), we have

o=z +yvm=d|N(u)| g +rs+av+ubm+ (au + bv + r1)V/m
= d|N(p)| g2 + av + ubm + au/m + buy/m + ro + r1v/m
= d|N(1)| g2 + (v + uv/m)(a + bym) + 12 +r1v/m
=d|N(u)| g2 + (v +uym)y+ro+rivm.

From Lemma 1.1, we have

a=re+rv/m (mod 7). (2.13)

Since 0 < 19 < d|N(p)| and 0 < r; < d, we have 0 < 7y < dIN(w)| -1, 0<r <d-1
Thus, modulo v, we have a = ro + miy/m € T. O

3 Representation II

Our second representation makes use of lattice points in a parallelogram. We begin with a
simple lemma.

Lemma 3.1. For any a; = ay + biom € Zlon], we have

% = (T‘1 + Sldm) + (Rl + Slam), (341)

where 1,81 € Z, and R1,S1 € QN [-1/2,1/2).

Proof. Multiplying a1 /v = (a1 + biom)/(a + bor,) by the conjugate of the denominator, we
get
(673) ay+ b10m
= 7 =C{+D 3.2
v a+bop, 1+ D1m, (3-2)
where
B e (a1a — a1b+ 252b1b) /N(y) if m=1 (mod 4)
e (a1a — bibm) /N(y) ifm#1 (mod 4)

and D := (bja — a1b) /N (7). The desired shape follows by taking

1 1
T1=[01+§j, s1= LD1+§J,31=01*7“1, S1 =Dy — s1.



Our second representation is given in

Theorem 3.2. Let Vi be the collection of lattice points inside the parallelogram ABCD whose
vertices are, respectively,

A:%(l+am), B:%(l—am), C=%(—1—0m), D=%(—l+am),

and let Vy be the collection of the lattice points on the half-open line segments BC and CD

excluding the points B and D, but possibly including the points C' (if C € Z[op]). Then
V=WUV;isa CRS(Y).

Proof. From Lemma 3.1, we have a; = (R1 + S10m )y (mod 7). The equations of the line
segments AB, BC, CD and DA are, respectively,

l+2t~1 2A-1 om 1 2t=1 2t—1+am
,7 2 2 Om 7’7 2 2 7’)’ 2 2 Om 77 2 2 )

where t e RN [0, 1].

e If -1/2< Ry < 1/2 and —1/2 < S; < 1/2, then (R1 + S10m)7 lies inside the parallel-
ogram ABCD, yielding (R; + S1om)y € V1.

e If Ry = —1/2, then (Ry + S104)7 lies on CD (excluding the point D), yielding (R; +
Slam)’y e V.

o If S; = —1/2, then (R; + S10m)7 lies on BC (excluding the point B), yielding (R1 +
S1om)y € Va.

These three possibilities show that each element of Z[oy,] is congruent to some element of V.
There remains to show that the elements in V' are incongruent mod ~. Note first that each
element a; € V = V4 UV, when represented under the form (3.1) of Lemma 3.1 always has
r1 = 57 = 0 and so (3.1) reduces to a3 = (R; + Siom)y. Thus, for any ai,a2 € V with
a1 = ag (mod v), we have a; = ag + §v, where § € Z[oy,] satisfies

6= (R1 — Ro) + (S1 — SQ)Um.

Since —1/2 < Rj, Ry, 51,52 < 1/2, and § € Z[oyp), we deduce that § = 0, yielding oy =
9. =

As pointed out in [1], it is of interest to find out when the set V5 in Theorem 3.2 is empty,
which we solve in the next proposition.

Proposition 3.3. Keeping the notation of Theorem 3.2, let m =1 (mod 4).
I If (1 — m)/4 is even, then the set Va is empty if and only if N(vy) is not divisible by 2.
II. If (1 — m)/4 is odd, then the set Vo is empty if and only if v is not divisible by 2.
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Proof. 1. Let (1 —m)/4 be even. If V, is empty, assuming N () is divisible by 2, we see that
] = 1—
N(y) = a2 — ab+ (—4@) b =a(a—b) + <—4"l> b2
is even, showing that either a is even, or a and b are both odd. If a is even, since

a b/m-1 a
S gl = ] T wYm va
C 5 2( 2 ) 50m € (om]

the vertex C is a point of Va. If a and b are both odd, choosing ¢t = 1/2 in the parametric
representation of the line BC' given in Theorem 3.2, we see that there is a vertex in V3, viz.,

om\ b (m-1 —a+b
7(_ 2)‘ 2( 4 >+( 2 >gm€Z[”m]'
In either case, the set V5 is non-empty, which is a contradiction.
On the other hand, if N () is rﬂdivisible by 2, assume that Vo # ¢. For a1 = ai+biop, €
Vs, we see that oy lies either on BC or on CD. If a; lies on BC, then from (3.2), we have

2 e b = —1, and so N(y) is divisible by 2, a contradiction. If a; lies on CD, then from

(3.2), we have —1\7175 (ar1a — arb+ Lmpib) = —%, showing that N(v) is divisible by 2, again a
contradiction.

II. Let (1 —m)/4 be odd. If V5 is empty, assuming 2|y, we see that the point C' is

a b/m-—1 a
1(—1—0m)=—§—5<—4—> “5Um€Z[0m],

and so C' € Va, contradicting the emptiness of V.

On the other hand, assume now that 2 { . If V5 is non-empty, then let a; = a1 +biom €
V4, so that « lies either on BC or on CD. We pause to prove an auxiliary result.

Claim. The number N(v) is divisible by 2 if and only if 2|y.

Proof of Claim. We have

N(v) = a® —ab+ hTme —(a—b)2+ab+ <1;4”l = 1) b2,
If N(v) is divisible by 2, since (1 —m)/4 is odd, then a — b and ab are of the same parity. If
a — b is odd, then a and b have opposite parity, yielding ab even, a contradiction. If a — b is
even, then a and b have the same parity. Since ab is even, both a and b are even, implying
that ~ is divisible by 2. The other implication is trivial, and the claim is proved.

Returning now to the proof of part II, if a; lies on BC, from (3.2), we have 2 (bia — a1b) =
—N(7), while if o lies on CD, from (3.2), we have

1
2 <a1a—a1b+ 4mb1b> = —N(7).

In either case N(v) is divisible by 2. Using the claim, we deduce that v is divisible by 2,
which is a contradiction. O
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Proposition 3.3 gives the following generalization of Bergum’s result [1].

Theorem 3.4. Let the notation be as in Theorem 3.2. Then Vo = ¢ if and only if N(v) is
not divisible by 2 .

Proof. The case m = 1 (mod 4) has already been proved in Proposition 3.3. Consider now
m # 1 (mod 4).
If V5 is empty, assuming N (7) is divisible by 2, we see that

N(v) = a* — mb? (3.3)

is even. We treat two possibilities cases depending on the parity of m.

Possibility 1: m is even. From (3.3), a is also even. Choosing ¢t = 1/2 in the parametric
representation of the line BC given in Theorem 3.2, we see that there is a vertex in V5, viz.,

_Vm\ _ _btm _aym
N\ "2 )T 2

€ Z[v/m), (3.4)

showing that the set V5 is non-empty, which is a contradiction.
Possibility 2: m is odd, say m = 2k + 1 (k € Z). Substituting into (3.3), we get

N(v) = (a — b)(a + b) — 2kb>. (3.5)

Since N(7) is even, either a and b are both even, or a and b are both odd. If a and b are
both even, the relation (3.4) yields v (—+v/m/2) € V,. If a and b are both odd, since

c=2(-1-ym=-20"" 420 e zivm),

the vertex C' is a point of V5. In either case, the set V5 is non-empty, which is a contradiction.
To establish the other implication, assume that N(v) is not divisible by 2. If V5 # ¢,
then for a; = a; + b1/m € Vs, we see that a; lies either on BC or on CD. If o lies on BC,
then from (3.2), we have
aby — arb o 1
N(7) 2’

and so N(v) is divisible by 2, a contradiction. If a; lies on C'D, then from (3.2), we have

aya — blbm o 1
N(v) 2’
showing that N(v) is divisible by 2, again a contradiction. O

4 Representation III

Our last representation makes use of lattice points in a hexagon. Since this representation is
so constructed to be minimal (in the sense that the sum of their absolute values is minimal),
we need to adjust the parameters in Lemma 3.1 appropriately using the following claim.
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Lemma 4.1. For any oq = a1 + byom € Zop], there are rational integers r, s and rational

numbers R, S such that

where

1 =l
Al o g (It o Il

% = (r + s0m) + (R + Som),

—-1<2R-S5<1

4
|m|+1

C|m[+1 < <|m|+1

4

2)SR<

4

(4.1)

(4.2)

(4.3)

(4.4)

(For convenience, a number written under the form (4.1) subject to (4.2)—(4.4) is said to be

in a standard form).

Proof. By Lemma 3.1, we have

ar1/v = (r1 + $10m) + (R1 + S104m), where r1,s; € Z, and

Ry,S1 € QN [-1/2,1/2). We treat four possible cases depending on the subdivision of the
ranges of R; and S, namely,

) =1/2<R; <0, -1/2< 8, <0,

0< R <1/2, 0< 81 <1/2,

v

)
i) -1/2<R; <0, 0<85; <1/2,
)

0< Ry <1/2, —1/2< 5 <0.

For the cases i) and ii), the lemma follows by taking r =1, s =s;, R=R; and S = 5.

As for case iii), since

~L< By +(m>51<mg—l, —%<2R1—Sl<0,0<(L’%“L—l)sl—R1<Jﬂ(|j—3,

we split our consideration into eight possibilities.

ii1) ~3 < R+ () 51 < 22, —§ < 2Ry - 51 < ~1 and
0<<#>51—R1<%.

The result follows by takingr =7, — 1, s=s;, R=R;+1, S = 51.

ii.2) —4 < Ry + (12
[m|+1 [m+1
== [

ImL_3, —% < 2Ry —S1 < -1and

o Rl & IWLIT'H}
The result follows by takingr =r; — 1, s=s1, R=R;+1, S=5;.

ii.3) —3 < R+ (I22) 81 < 222, -1 < 2R, - 51 <0 and

0< (‘"”“) By~ Ry < 2,

The result follows by taking r =r;, s=s;, R=R;, S=251.



iii.5)

iii.6)

iii.7)

iii.g)

—%<R1+<'~"%>S <=2 _1<9R -8 <0and

|mL+l < (1m|2+1 S — Ry < |m|+3

These three sets of inequalities are self-contradictory, so this possibility is ruled out.

L B R1+ () s < I —3/2< 2R - S < ~1 and
R < ——Imljl.

0< (=
The inequalities are self-contradictory.

Im=s < gy +(L—>S Bl o <om -5 < ~1and
[ml;—l < [m!;—l Sl = B < Imlli—%—S.

The result follows by takingr =71, s=s8+1, R=R;, S=51—-1
m|-3
4 iy

(1) s < 2, 1< 2R~ $1 <0 and
0 (lﬂgﬂ)sl“R1< @;_—1
The result follows by taking 7 =ry, s =51, R=R;, S=51.

g8 <R1+(|m| 1) 5y < =t 1 < 2Ry — S < 0 and
I+

ml+1 o |m|2+1> S — Ry < ]ml|1+3.

q
The result follows by taking r =71, s=s1+1, R=R;, S=5 - 1L

We next turn to case iv). Since
B R+ ('m';l) S1<1,0<2R -8 <§, -lmE < (L-—’”12+1> Sy — Ry <0,

we again split our consideration into eight possibilities.

iv.l) —

iv.2)

iv.3)

iv.4)

|m| 1

<R+('m'1>S< m=3 0 < 9R; — 8 < 1 and
< |m|2+1)s _ Ry < — |m|+1

The result follows by taking r = rl, s=8—1, R=R;, S=51+1.

- |m|+3
4

W= P +(1——)S< m=3 "0 < 2R, — S1 < 1and
M (———'m'2+1) 8, = By <0,

The result follows by taking r = r1, s =s1, R=Ri, S =51.
St < Ry () 5 < IR, 1 <0k, - S < § and

_|m‘|1+3 - |m|2+1 S — Ry < — |m|+1

The result follows by taking r = 7“1, s=s1—1, R=R;, S=51+1.

St R () sy < I 1 < 2R - $1 < § end

_|m|T+1§ ImIT+1>Sl—R1<O-

The inequalities are self-contradictory.

13
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iV.5) —lﬂlf—s < R: + (lm‘2—1> St < %, 0<2R; - S51 <1 and

[m|+1 Sl o 1%1 < _]méll-i—l'

The inequalities are self-contradictory.

I
I
VAN
N

iv.6) 8 < By + (1) $1< 4, 0< 2R — Si < 1and

5 ) Sy — R <0.
The result follows by taking 7 =71, s =381, R= Ry, S=651.

El
s

IA
—
]
o

v.7) M8 < Ry + () S1< §, 1< 2R - S1 < §end
Sl—R1<*—m£il.

The result follows by taking 7 =71 + 1, s = s1, R=R; -1, S=S5.

|__
‘3
+
w
N
N oy
3
ue

iV.8> _|mL——3 <R+ (‘—77—'"2;1> S < %, 1<2R; — S < % and
_|m11+1 £ Iml;-l) g — By <0,

The result follows by taking r =r1 + 1, s = s1, R=R; -1, S=5;.

We now state our third representation.

Theorem 4.2. Let v = a + bom € Zlom] \ {0}. Let Wi be the collection of lattice points
inside the hezagon ABCDEF whose vertices are, respectively,

po (A oty ) o (e I ),
C:ﬁ(—lml:lﬂml;l%» D:ﬁ<_3|mia1_lm\2—1am>7
E:ﬁ<_|m|4+1 “1m|2+10m>’ F:ﬁcm‘:l _lm12—10m>,

and let Wo be the collection of lattice points on the line segments CD, DE and EF' excluding
the vertices C, F, but possibly including the endpoints D (if D € Zlowm]) and E (if E € Zlow)).
Then W = W1 U Ws is a CRS(7).

Proof. We begin by showing that any a; = a1 + bi0m € Z[om) is congruent mod v to an
clement in W. From Lemma 4.1, we see that a3 = (R+ Som)y (mod ). We show next
that the point P := (R + Som)7 belongs to the set W = W; U Wa. Since the line segments
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AB, BC, CD,DE,EF and FA are given, respectively, by

vy [|m|+1 |m|-1 |m| + 1
lml{ 1 + 5 t+ 2 bl v

_|m|+1+|m]+1t+ |m|—1+t .
4 g 2 e

{

ﬁ {_3|m[11— b, |m]2— Ly (_%_1 + (jm| - 1)t> om},
{
{

0% Im|+1 —|m|+1 |m| + 1

e e b || sl S B

il 1 i 9 + 5 +t)om,

v [lm|+1 |m|+1 |m| —1

L - B it =

ml |~ 4 2 't 2 Frif

v [3m|-1 —|m|+1 |m| —1

= t L = 1)t
2 2 e (P il 1) e

where t € RN [0, 1], the location of the point P is easily checked as follows:

. if_lmlT+1 < R_{_L”%S < #7 ~1<?2R-S <1, _lmL—H < 'm|2+1S~R< lmL+1,
then P lies inside the hexagon ABCDEF, i.e., P € Wy;

e if 2R — S = —1, then P lies on CD (excluding the point C), i.e., P € Wa;

o if R+ 'm]{lS = —|m11+1, then P lies on DE, i.e., P € Wy;

o if %S — R = —lin—";'—l, then P lies on EF (excluding the point F), i.e., P € Wa.

There remains to check that any two distinct elements of W are incongruent modulo . To
this end, let a; € W, and assume without loss of generality that it is written in standard
form as

%:(r+sam)+(R+SUm)=(7"+R)+(3+S)Um

with r,s € Z; R,S € Q satisfying (4.2)—(4.4). Since oy € W, i.e., « lies inside the hexagon
or on the line segments CD, DE, EF (excluding the vertices C, F', but possibly including the
points D, E), its coordinates must satisfy

-1<2(R+r)—-(S+s)<1 (4.5)
_|m|4+l < (R+T)+ (]TI’LIQ_ l) (S+8) = |ml4+1 (4.6)
Jml:l < <‘m‘2“> (B4 = @+ )< PLEL (4.7)

Solving (4.2) and (4.5) and using the fact that r, s € Z, we get

2r —s=0. (4.8)
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Solving (4.3) and (4.6), we get

1 -1 1
et (o1, e

2 2 2
Solving (4.8) and (4.9), we get

._|m < — M—*—_l

<|m|r <

|m|+1
S <|m|.

Since 7 € Z, we must have r = s = 0, i.e.,, a1 = (R + Sopm)y. Thus, any element ap of W' is
of the form .

as = (U + Vom)y, where U, Vare rational numbers satisfying (4.2)-(4.4)
with U in place of R and V in place of S. (4.10)

If a; = oy (mod ), then oy = ag + 73 for some & € Z[om). If § # 0, then v8 € Z[owm] \ {0},
which is a contradiction because ag is of the form (4.10) but oy is not. Thus, § = 0 yielding
o] = Q. O

Our final discussion deals with the concept of minimal representation, which is defined
([1)) as follows: a representation S of a complete residue system modulo 7 is said to be an
absolute minimal representation if and only if for any representation R of a complete residue

system modulo v, we have
ST IN() < Y ING)I-
a€sS BER

Bergum in [1] discovered an absolute minimal representation modulo v for Z[o_3]. Using

our third representation, this result of Bergum is now generalized but only for the case of
negative integer m.

Theorem 4.3. Let W be as defined as in Theorem 4.2. Assume that m < 0. If a € W and
if B € Loy is such that B = a (mod ), then |[N(B)| > |N(a)]|.

Proof. From the latter half of the proof of Theorem 4.2, we can write « in its standard form
as o = (R + Som)7, with the three sets of governing inequalities (4.2)—(4.4).

Consider first the case m = 1 (mod 4). Since 8 = « (mod v), we have §—a = y(c+dom)
for some ¢ + doy, € Z[om|. Therefore,

(2)-ren

where E = 2Rc+c?— Rd—cS —cd + ( ) Sd+ (—m-) d?. To prove the theorem, it suffices
to check six possibilities.

=R

v

1. If ¢ =0, from (4.4), we have E = (52 {d2 +d 4R+(2 2m)5)} 0.

v

(Fesdame
2. If ¢ = d, from (4.3), we have E = (152 {d2+d(4R+ = 2ms)} 0.
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3. If c < d and ¢ < 0, from (4.2), we have 2R — S —d < —d + 1 < —c. Thus, ¢? + (2R —
S —d)c> 0 and (4.4) yields

E=c+@2R-S—dc+ (1——‘4—"3> {d2+d(*4R+(2_2m)5>} > 0.

1—-m ol

4. If c < d and ¢ > 0, from (4.4), we have ¢ < d -1 < w + d, which after
simplification gives d {—R + (1_7"‘) S+ (%m) d}— (I_Tm) cd > 0. Using (:37_@) cd >0
and (4.2), we get

pafone (5250 (52) - () (252)

+(2+c(2R-8S)) > 0.

5. If ¢ > d and ¢ < 0, from (4.4), we get -—-——_4R+(_2*2 g wd1 < ¢, which after
l-m
simplification gives

e (525 (528 () oo

Using d < ¢ < 0 and (4.2), we have

ool (5o (5) - (5)s (252)

+ (> + c(2R - 8)) > 0.

6. Ifc > dand ¢ > 0, from (4.2), we have d < c—1 < 2R—S+c. Thus, ¢(2R—-S+c)—cd > 0
and (4.4) yields

E=c2R—5+¢c)—cd+ (1—;—@) {d2+d<_4R+l(_2;2m)S>} > 0.

Next, consider the case m # 1 (mod 4). Since 8 = a (mod v), we have 8 — a = y(c+ dy/m)
for some ¢ + dv/m € Z[/m]. From g = (R+c) + (S + d)ym, we get

N(B) = (R+e?—m(s+d?=N(%)+E, (4.11)
i Y

where E = 2Rc+c¢? —2mSd—md?. Since R, S € [—1/2,1/2), and ¢, d, m are rational integers
with m being negative, we have E = (¢ + 2Rc) — m(d? + 25d) > 0. Thus, (4.11) implies
IN(B)| > IN(@)].

O
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